

Mineral Madness

YEAR 8 EARTH AND SPACE SCIENCES

Future Makers

Future Makers is an innovative partnership between Queensland Museum Network and Shell's QGC business aiming to increase awareness and understanding of the value of science, technology, engineering and maths (STEM) education and skills in Queensland.

This partnership aims to engage and inspire people with the wonder of science, and increase the participation and performance of students in STEM-related subjects and careers — creating a highly capable workforce for the future.

Copyright © 2019 Queensland Museum and The University of Queensland.

The images included in this teaching resource may be used for non-commercial, educational and private study purposes. They may not be reproduced for any other purpose, in any other form, without the permission of the Queensland Museum.

This teacher resource is produced by Future Makers, a partnership between Queensland Museum Network and Shell's QGC business, with support from the Australian Research Council and other parties to ARC Linkage Project LP160101374: The University of Queensland, Australian Catholic University Limited and Queensland Department of Education.

ENGAGE

Mineral Madness

Teacher Resource

Rocks are made up of minerals. Minerals are naturally occurring inorganic solid substances. There are many thousands of types of minerals found on Earth and quite a few in lunar rocks and meteorites.

Minerals are made up of chemical elements and have a definite chemical composition. Some minerals, such as diamond, gold and sulfur, contain only one chemical element; these minerals are known as native elements. Most minerals are chemical compounds; these minerals contain a combination of chemical elements. It is the specific chemical composition and crystalline structure of each mineral that determines its properties. These characteristics can also be used to classify a mineral into one of several groups, including the native elements, sulphides, oxides, halides, carbonates, sulfates and phosphates.

In this activity, students explore the chemical composition of minerals by playing the game *Mineral Madness*. *Mineral Madness* is based on the card game 'Rummy' and follows a similar style of play. Within *Mineral Madness*, students identify the chemical formula of varied minerals, before using a periodic table and element cards to form their minerals. Instructions and game cards can be found on the following pages.

After engaging with the game, students could:

- Sort the minerals based on their elemental groups, and research the characteristics of these groups and others not included in the *Mineral Madness* selection of minerals.
- Investigate each mineral, including its date of discovery, who first described the mineral, how it was named, and the historic and current uses of the mineral.
- Explore which minerals form various igneous, metamorphic and sedimentary rocks.

Curriculum Links

Science

YEAR 8

Science Understanding

Sedimentary, igneous and metamorphic rocks contain minerals and are formed by processes that occur within Earth over a variety of timescales (ACSSU153)

Science Inquiry Skills

Communicate ideas, findings and evidence based solutions to problems using scientific language, and representations, using digital technologies as appropriate (ACSIS148)

General Capabilities

Literacy

Comprehending texts through listening, reading and viewing

Mineral Madness

Student Resource

Mineral Madness Game Instructions

 Players:
 2 – 5 players

 Game Components:
 16 x mineral cards

 48 x element cards
 1x periodic table per player

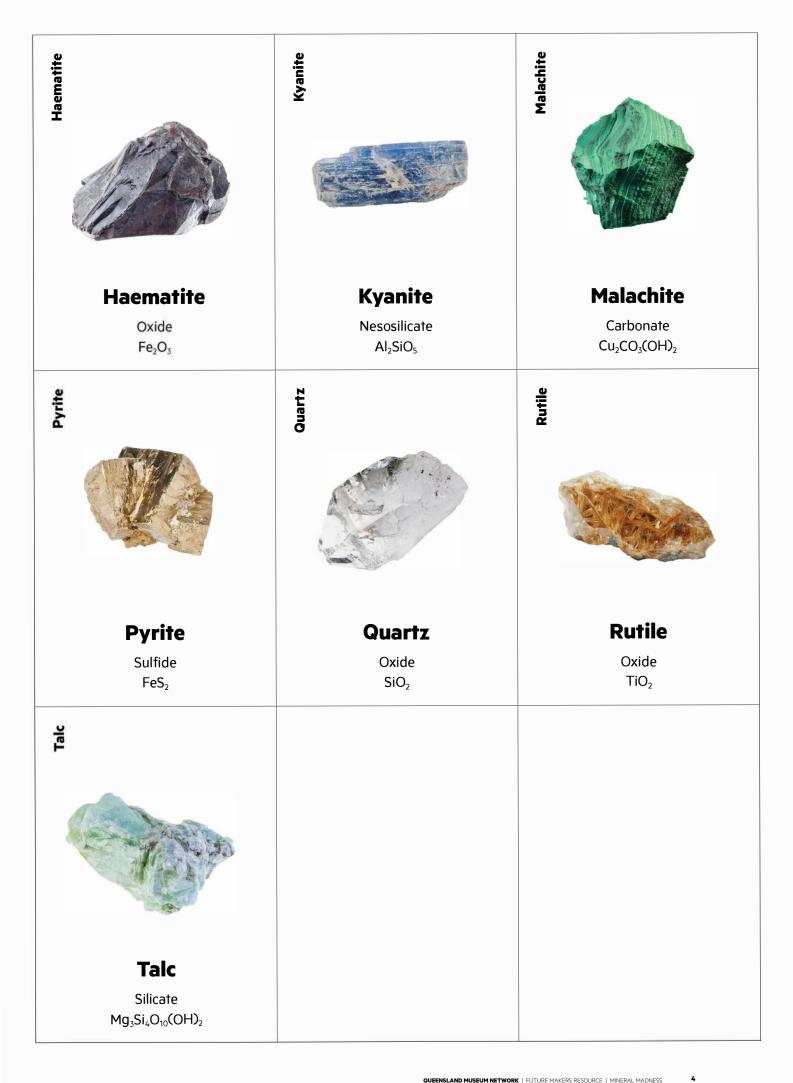
Objective: Explore the chemical composition of minerals. Pick up and use element cards to form minerals. The first person to use all of the element and mineral cards in their hand is the winner.

Game Play:Select one person to be the dealer. The dealer shuffles and deals the cards to
each player. When playing with two, three or four players, each player receives
ten cards. When playing with five players, each player receives six cards.

After dealing, the dealer places the remaining cards face-down in a pile in the middle of the group. The dealer flips over the first card to create a discard pile. The person sitting to the left of the dealer plays first.

The first player can either pick up the card on the discard pile or the top card from the main pile. If they can combine their element cards to form a mineral card in their hand, they may do so. One element card may be used to represent elements that appear multiple times in a mineral's chemical formula, for example:

Machte	Copper	Carbon	Oxygen	Hydrogen
Malachite				
Carbonate Cu ₂ CO ₃ (OH) ₂				


These cards can then be placed face-up in front of the player. The player discards one mineral or element card from their hand, face-up onto the discard pile, to end their turn. Play moves to the next player on the left.

Play continues until one player has no cards remaining in their hand.

Tips:Players can use a periodic table to help identify the chemical elements that
form specific minerals.

A wild card can be used to represent any one element.

Copper		Copper	Copper
	Copper	Copper	Copper
Carbon		Carbon	Carbon
	Carbon	Carbon	Carbon
Carbon		Carbon	Oxygen
	Carbon	Carbon	Oxygen

Oxygen		Oxygen	Oxygen
	Oxygen	Oxygen	Oxygen
Oxygen		Oxygen	Oxygen
	Oxygen	Oxygen	Oxygen
Oxygen		Oxygen	Hydrogen
	Oxygen	Oxygen	Hydrogen

Hydrogen	Hydrogen	Calcium
Hydrogen	Hydrogen	Calcium
Calcium	<u>ق</u> Iron	<u>b</u> Iron
	Sulphur	Sulphur
Iron	Sulphur	Sulphur

Sulphur	Aluminum	Aluminium
Sulphur	Aluminium	Aluminium
Potassium	Silicon	Silicon
Potassium	Silicon	Silicon
Silicon	Silicon	Fluorine
Silicon	Silicon	Fluorine

Lead	Sodium	Chlorine
Lead	Sodium	Chlorine
Titanium	Silicon	MILD
Titanium	Silicon	WILD
MLD	MILD	MILD
WILD	WILD	WILD

MILD	MILD	MILD
WILD	WILD	WILD

PERIODIC TABLE OF THE ELEMENTS

2 4,0025 He HELUM 10 20.180 Ne	Ar Ar ARGON	Υ.	KRYPTON 54 131.29	Xe	XENON 86 (222)	Bn	118 (294)	Ono	UNUNOCTIUM			
9 18.998 1.0988		D D	53 126.90 5	-	100INE 85 (210) 8	At	117 (294)	Nus	UNUNSEPTIUM	71 174.97	Lu	LUTETIUM
8 15.299 Oxfeen		Se .	Selenium 52 127.60	Te	TELLURIUM 84 (209)	Ро	116 (292)	2		70 173.05	٩۲	YTTERBIUM
7 14.007 N NTROGEN	15 30.974 P PHOSPHORUS		51 121.76	Sb	ANTIMONY 83 208.98	ï	115 (288)	Uup	UNUNPENTIUM	69 ^{168.93}	Tm	THULIUM
6 12.011 CARBON	14 28.086 SILCON	Ge	GERMANIUM 50 118.71	Sn	TIN 82 207.20	P P	114 (289)	Ē	FLEROVIUM	<u>68 167.26</u>	ш	ERBIUM
5 10.811 BORON	13 26.982 AI ALUMINIUM	Ga	GALLIUM 49 114.82	<u>_</u>	INDIUM 81 204.38	F	113 (284)	Uut	UNUNTRIUM	67 164.93	Я	HOLMIUM
्य	Co.		ZINC 48 112.41	Cd	CADMIUM 80 200.59	Hg	мексики 112 (285)	Cn		<u>66 162.50</u> 67	D	DYSPROSIUM
Metalloids Non-metals Halogen non-metals Noble gases Actinides	20	S O	COPPER 47 107.87	Ag	SILVER 79 196.97	Au	111 (280)	Rg	ROENTGENIUM	65 158.93	Tb	TERBIUM
	So S		NICKEL 46 106.42	Р	78 195.08	F	110 (281)	Ds		64 157.25	Gd	GADOLINIUM
Alkali metals Alkaline earth metals Post transition metals Transition metals Lanthanides		O	COBALT 45 102.91	Rh	T7 192.22	_	109 (276)	Mt	MEITNERIUM	63 151.96	Eu	EUROPIUM
	2012 2012		RON 44 101.07	Ru	RUTHENIUM 76 190.23	Os	108 (277)	Hs	HASSIUM	62 150.36	Sm	SAMARIUM
Atomic mass Symbol	me 25		MANGANESE		75 186.21	Re	107 (272)	Bh	BOHRIUM	61 (145)	Pn	PROMETHIUM
10.811 - Atomic Symbol	Name		CHROMIUM 42 95.96	Мо	MOLYBDENUM 74 183.84	8	106 (271)	Sg	SEABORGIUM	60 144.24 61	PN	NEODYMIUM
	BORON		VANADIUM 41 92.906	qN	NIOBIUM 73 180.95	Ta	105 (268)	Db	DUBNIUM	59 140.91	P	PRASEODYMIUM
Ther - 5	33		40 91.224	Zr	ZIRCONIUM 72 178.49		104 (267)	Rf	RUTHERFORDIUM	58 140.12	Ce	CERIUM
Atomic number –	21	S	SCANDIUM 39 88-906	≻	уттяим 57 - 71	La-Lu	Lammanues 89 - 103	Ac-Lr	Actinides	57 138.91	La	LANTHANUM
4 9.0122 BERYLLUM	12 24.305 Mg MAGNESIUM		CALCIUM 38 87.62	Ś	56 137.33		BARIUM 88 (226)	Ra	RADIUM			
1 1.0079 HYDROGEN 3 6.941 LITHUM	11 22.990 Na sopium	<u> </u>	POTASSIUM 37 85.468	Rb	55 132.91	Cs	CAESIUM 87 (223)	Ъ,	FRANCIUM			

FERMIUM MENDELEVIUM

BERKELIUM CALIFORNIUM EINSTEINIUM

βd

EB

S Ш

ູ່ວ

¥

Am

Pu

PROTACTINIUM

Thorner Thorn

11